Laser physics: Attosecond photoelectron spectroscopy accelerated

Laser physicists have succeeded in reducing the acquisition time for data required for reliable characterization of multidimensional electron motions by a factor of 1000. Continue reading “Laser physics: Attosecond photoelectron spectroscopy accelerated”

New insights into magnetic quantum effects in solids

Atoms and molecules in crystalline solids are arranged in regular three-dimensional lattices. The atoms interact with each other via various forces, finally reaching a state of minimum energy. Near absolute zero, the lattice oscillations freeze, so that interactions between electron spins dominate. A particularly interesting case occurs when the spins cannot all align at the same time to reach a state of lowest energy. This results in a frustrated system in which the spins are almost completely disordered and are therefore referred to as a spin liquid. Continue reading “New insights into magnetic quantum effects in solids”

One step closer to complex quantum teleportation

For future technologies such as quantum computers and quantum encryption, the experimental mastery of complex quantum systems is inevitable. Scientists from the University of Vienna and the Austrian Academy of Sciences have succeeded in making another leap. While physicists around the world are trying to increase the number of two-dimensional systems, so-called qubits, researchers around Anton Zeilinger are breaking new ground. Continue reading “One step closer to complex quantum teleportation”

Laser blasting antimatter into existence

Antimatter is an exotic material that vaporizes when it contacts regular matter. If you hit an antimatter baseball with a bat made of regular matter, it would explode in a burst of light. It is rare to find antimatter on Earth, but it is believed to exist in the furthest reaches of the universe. Amazingly, antimatter can be created out of thin air — scientists can create blasts of matter and antimatter simultaneously using light that is extremely energetic. Continue reading “Laser blasting antimatter into existence”

First proof of quantum computer advantage

For many years, quantum computers were not much more than an idea. Today, companies, governments and intelligence agencies are investing in the development of quantum technology. Robert König, professor for the theory of complex quantum systems at the TUM, in collaboration with David Gosset from the Institute for Quantum Computing at the University of Waterloo and Sergey Bravyi from IBM, has now placed a cornerstone in this promising field. Continue reading “First proof of quantum computer advantage”

Blog at WordPress.com.

Up ↑