Unlocking the untapped potential of light in optical communications

Scientists at Tokyo Institute of Technology have fabricated a multiplexer/demultiplexer module based on a property of light that was not being exploited in communications systems: the optical vortex. Such devices will be crucial for improving optical networks, which are the backbone of today’s Internet, so that they can meet the traffic demands of tomorrow. Continue reading “Unlocking the untapped potential of light in optical communications”

Advertisements

Bioengineers create ultrasmall, light-activated electrode for neural stimulation

Neural stimulation is a developing technology that has beneficial therapeutic effects in neurological disorders, such as Parkinson’s disease. While many advancements have been made, the implanted devices deteriorate over time and cause scarring in neural tissue. In a recently published paper, the University of Pittsburgh’s Takashi D. Y. Kozai detailed a less invasive method of stimulation that would use an untethered ultrasmall electrode activated by light, a technique that may mitigate damage done by current methods. Continue reading “Bioengineers create ultrasmall, light-activated electrode for neural stimulation”

High-performance quantum dot mode-locked laser on silicon

Ten years into the future. That’s about how far UC Santa Barbara electrical and computer engineering professor John Bowers and his research team are reaching with the recent development of their mode-locked quantum dot lasers on silicon. It’s technology that not only can massively increase the data transmission capacity of data centers, telecommunications companies and network hardware products to come, but do so with high stability, low noise and the energy efficiency of silicon photonics. Continue reading “High-performance quantum dot mode-locked laser on silicon”

Blog at WordPress.com.

Up ↑